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Propuesta conceptual de una ar-
quitectura paraun asistente de pre-
diccion de glucosa (GPA) basada
en la revision de la literatura

RESUMEN: El manejo efectivo de la dia-
betes requiere control glucémico preciso
y acciones proactivas. Este trabajo aporta
(i) una revision critica de las técnicas de
prediccién de glucosa sanguinea (BGL) —
aprendizaje automatico tradicional, mode-
los de aprendizaje profundo (LSTM, CNN,
Transformers y enfoques hibridos) y el rol
emergente de los Modelos de Lenguaje
a Gran Escala (LLMs), considerando va-
riables como carbohidratos e insulina—, y
(ii) la propuesta arquitecténica GlucoPre-
dict-Assist (GPA) para pronéstico perso-
nalizado de BGL y generaciéon de suge-
rencias de dosis.

El desarrollo se estructura en tres pasos:
primero, se analizan enfoques avanzados
(descomposicion de senales, personaliza-
cién y uso de modelos preentrenados)y su
impacto en eficiencia y precisién; segun-
do, se identifican brechas, en particular
la integracién de predicciones fiables con
sugerencias de dosis seguras, asi como
limitaciones y riesgos actuales de los
LLMs; tercero, se disena GPA priorizando
seguridad, interpretabilidad y adaptacién
individual.

Esta propuesta establece las bases para
una herramienta que, al mitigar picos y
favorecer decisiones informadas, podria
mejorar de forma significativa el automa-
nejo de la diabetes.
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ABSTRACT: Effective diabetes management requires ac-
curate glycemic control and proactive actions. This paper
provides (i) a critical review of blood glucose (BGL) predic-
tion techniques—traditional machine learning, deep learning
models (LSTM, CNN, Transformers, and hybrid approa-
ches), and the emerging role of Large Language Models
(LLMs), considering variables such as carbohydrates and
insulin—and and (ii) the GlucoPredictAssist (GPA) architec-
tural proposal for personalized BGL forecasting and dose
suggestion generation.

The development is structured in three steps: first, advan-
ced approaches (signal decomposition, personalization,
and use of pre-trained models) and their impact on efficien-
cy and accuracy are analyzed; second, gaps are identified,
in particular the integration of reliable predictions with safe
dose suggestions, as well as current limitations and risks of
LLMs; third, GPA is designed prioritizing safety, interpreta-
bility, and individual adaptation.

This proposal lays the foundation for a tool that, by mitiga-
ting spikes and promoting informed decisions, could signi-
ficantly improve diabetes self-management.

KEYWORDS: Deep Learning, System Architecture, Diabe-
tes Mellitus, Insulin Dosing, Glucose Prediction, Large Lan-
guage Models.

INTRODUCCION

La diabetes mellitus representa una condicién crénica genera-
lizada globalmente, que exige un automanejo meticuloso para
prevenir complicaciones severas. Un pilar fundamental es el
control de los niveles de glucosa sanguinea (BGL, por sus si-
glas en inglés) el cual es una variable dinamica influenciada
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por multiples factores: la ingesta de carbohidratos, la
medicacion de insulina, la actividad fisica, el estrés y la
variabilidad fisiologica individual. Esta complejidad se
acentua con nuevas opciones terapéuticas y riesgos
metabdlicos adicionales, presentando a menudo a los
profesionales sanitarios multiples opciones terapéuti-
cas validas segun las guias, pero sin un consenso cla-
ro sobre el enfoque 6ptimo [1]. Aunque la tecnologia
de Monitoreo Continuo de Glucosa (CGM, por sus si-
glas eninglés) ofrece datos valiosos en tiempo real, su
interpretacion y la accién proactiva derivada continuan
siendo un desafio, incluso con herramientas de anali-
sis como el Perfil Ambulatorio de Glucosa (AGP, por
sus siglas en inglés) [2].

Este trabajo responde a la necesidad, tanto personal
como general, de disponer de herramientas mas efi-
caces para anticipar las fluctuaciones futuras de BGL
y, de forma crucial, para guiar la dosificacion adecua-
da de medicamentos, permitiendo manejar proacti-
vamente los picos de glucosa. El objetivo central es
doble: primero, realizar una revision exhaustiva de las
técnicas actuales de inteligencia artificial para la pre-
diccion de BGL; segundo, proponer una arquitectura
de sistema que integre prediccién personalizada con
sugerencias de dosis seguras y accionables, buscan-
do asi mejorar el control glucémico y la calidad de
vida.

En este marco, la investigacion se guia por una pre-
gunta puntual: ¢como anticipar, con datos de CGM vy
variables clinicas (carbohidratos, insulina, actividad),
las variaciones de BGL a corto plazo y convertir esas
predicciones en sugerencias de dosificacion seguras
y accionables? Para darle desarrollo, se delimit6 el al-
cance (prediccion personalizada y apoyo a la dosifica-
cién), se definieron criterios y poblacion de referencia,
y se ejecutd una revision de la literatura conforme al
proceso general de la Figura 1 (objetivo y alcance —
busqueda y cribado — extraccién y organizacién —
sintesis tematica y analisis critico).

Proceso de revision de la literatura

Bulsqueda y xtraccion

cribado y organizacién
bases, términos, variables, métricas,
filtros tablas

Objetivo y
alcance
criterios y enfoque

Sintesis tematica
y andlisis critico

Figura 1. Proceso de revision.
Fuente: Creacioén Propia.

Las principales aportaciones son: (i) Identificacion de
una necesidad critica: ausencia de herramientas que
integren prediccion fiable de BGL con sugerencias de
dosis seguras y personalizables; (ii) Revisién exhaus-
tiva del estado del arte: analisis de meétodos fradicio-
nales y de aprendizaje profundo (LSTM, CNN, Trans-
formers y enfoques hibridos), variables y métricas
reportadas; (iii) Evaluacion del papel de los LLMs en
diabetes: potencial para sugerencias/explicaciones y
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limites y riesgos en seguridad clinica; y (iv) Propuesta
de arquitectura: GlucoPredictAssist (GPA), orientada
a seguridad, interpretabilidad y adaptacion individual,
que integra prediccion y soporte a la dosificacion.

Para cumplir con este doble objetivo, la revision de la
literatura se estructuré de manera critica y progresiva.
Se comenzd6 con el anélisis de los métodos de predic-
cién de BGL, desde el aprendizaje automatico tradi-
cional hasta las arquitecturas de aprendizaje profundo
mas avanzadas (LSTM, CNN, Transformers y enfoques
hibridos), evaluando su precision y eficiencia. Poste-
riormente, la revision se focalizoé en un desafio critico:
la integracion de estas predicciones con sugerencias
de dosificacion seguras, examinando el rol emergente
de los Modelos de Lenguaje a Gran Escala (LLMs) y
sus inherentes riesgos de seguridad en el ambito cli-
nico.

La hipdtesis fundamental sostiene que una combi-
nacion sinérgica de modelos de aprendizaje profun-
do (posiblemente incorporando descomposicion de
senales, mecanismos de atencidén y estrategias de
personalizacion) junto con una arquitectura cuidado-
samente disenada que integre principios de seguridad
y supervision humana, puede superar las limitaciones
actuales y mejorar significativamente el automanejo
de la diabetes.

Revisién de la literatura

La prediccion de los niveles de BGL es un campo
de estudio extenso. Los enfoques iniciales compren-
den modelos estadisticos y técnicas de aprendizaje
automatico ftradicional, incluyendo Support Vector
Regression (SVR), Random Forests, y arboles de de-
cision. Aunque son Uutiles, estos métodos a menudo
tienen dificultades con su naturaleza no lineal, dinami-
ca y multifactorial de la regulacion de la glucosa.

El aprendizaje profundo demuestra un potencial con-
siderablemente mayor en este dominio. Las Redes
Neuronales Recurrentes (RNNs, por sus siglas en in-
glés), y en particular las Long Short-Term Memory
(LSTMs), son inherentemente adecuadas para cap-
turar las dependencias temporales,[3]. Por otro lado,
las Redes Neuronales Convolucionales (CNNs, por sus
siglas en inglés) se emplean para extraer patrones lo-
cales, frecuentemente integrados en arquitecturas hi-
bridas CNN-LSTM [4]. Mas recientemente, los mode-
los Transformer y los mecanismos de atencién, como
los implementados por Armandpour [5], muestran una
notable capacidad para modelar dependencias a lar-
go plazo e integrar fuentes de datos multimodales.
Estrategias hibridas que combinan la descomposicion
de caracteristicas, por ejemplo, mediante Variational
Mode Decomposition (VMD) con LSTMs para capturar
tendencias a largo plazo y Transformers para fluctua-
ciones a corto plazo, junto con técnicas de optimiza-
cién como Knowledge Distillation para la compresion
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de modelos, reportan mejoras significativas en preci-
sion y eficiencia [6].

Un desafio persistente es la integracion efectiva de
datos multimodales CGM, carbohidratos, insulina, ac-
tividad fisica, esirés, efc. Que presentan diferentes
caracteristicas de muestreo y grados de dispersion.
Para lo que se proponen soluciones como la trans-
formacion de eventos discrefos en senales continuas
(SSR, por sus siglas en inglés) [6] o el uso de capas
de embedding aprendibles junto con modelos preen-
trenados como Bidirectional Encoder Representations
from Transformers (BERT) para manejar datos es-
tructurados de registros médicos longitudinales [7]. La
personalizacion es un elemento vital, enfoques como
el uso de embeddings especificos de usuario [5] o
el ajuste fino (fine-tuning) de modelos pre-entrenados
[7] permiten adaptar modelos generales a las particu-
laridades fisiologicas y de comportamiento de cada
individuo. La eficiencia computacional es otro factor
critico, especialmente para el despliegue en disposi-
tivos moviles o de borde; técnicas como Knowledge
Distillation [6] y la optimizacion de implementaciones
son, por tanto, relevantes. La interpretabilidad de los
modelos de aprendizaje profundo, aunque es com-
pleja, es de gran importancia, y métodos como los
gradientes infegrados pueden ayudar a identificar los
factores clinicos mas influyentes [7].

En el panorama reciente, los LLMs como GPT-4 emer-
gen con potencial en el ambito de la salud. Pueden
responder preguntas [8][9], resumir informacion, ana-
lizar datos de CGM [2] e incluso asistir en la genera-
cién de planes de manejo o seleccion de medicacion
[1][10]. No obstante, su aplicacion directa para tareas
numeéricas precisas como la prediccion de BGL o el
calculo de dosis de medicacion conlleva comparativos
indican que, si bien los LLMs pueden generar planes
de fratamiento o seleccionar medicaciones alineadas
con guias clinicas, a menudo adoptan un enfoque mas
cauteloso que los expertos humanos [1] o, preocupan-
temente, pueden cometer errores criticos de seguri-
dad como omitir medicamentos necesarios, continuar
terapias inadecuadas o sugerir dosis incorrectas en
un porcentaje no despreciable de casos [10]. Ademas,
pueden exhibir sesgos hacia tratamientos mas nue-
vos o costosos [1] y su fiabilidad se ve comprometida
por la posibilidad de generar informacién incorrecta
0 "alucinaciones” [8]. La confianza publica en estos
sistemas, particularmente en situaciones agudas, es li-
mitada, con una preferencia mayoritaria por la supervi-
sion de profesionales sanitarios [8],[11]. Técnicas como
la Generacion Aumentada por Recuperacion (RAG,
por sus siglas en inglés) pueden mejorar la fiabilidad
al anclar las respuestas en fuentes de conocimiento
confiables [9]. Asimismo, los sistemas que incorporan
Humano en el bucle (HITL, por sus siglas en inglés) se
consideran esenciales para mitigar riesgos y asegurar
una implementacién segura y efectiva [1].

3. ARQUITECTURA PROPUESTA

Derivado de larevision de literatura y con el fin de abor-
dar las brechas identificadas, en especial la hecesidad
critica de unificar predicciones precisas de BGL con
sugerencias de dosificacién que sean seguras, fiables
y aplicables, se propone una arquitectura de sistema
integrado, denominada provisionalmente GlucoPre-
dictAssist (GPA). Este sistema se concibe para el pro-
néstico personalizado de BGL y la generacion asistida
de sugerencias de dosis de insulina, fundamentando-
se en los principios de seguridad, interpretabilidad y
adaptacion individual a través de un enfoque robusto
de Interaccion Humano-Computadora (HITL).

3.1 Metodologia de Diseno de la Arquitectura

El diseno de la arquitectura GPA se fundamentd en un
enfoque de Sistemas centrado en los requisitos, si-
guiendo un proceso de tres etapas clave impulsado
por los hallazgos de la revision de literatura. Este pro-
ceso metodolégico buscd asegurar la robustez clinica
y la seguridad del usuario desde la concepcion:

Para facilitar la comprension, la Figura 2 resume el
proceso en fres tres macroetapas, compuestas por
nueve subetapas: I) Datos y Modelado (1: adquisicion
de datos; 2: preprocesamiento; 3: modelado de BGL;
4: personalizacion); Il) Sugerencia y Control (5: suge-
rencia de dosis; 6: médulo LLM; 7: seguridad y valida-
cién; 8: supervisidon humana); y Ill) Monitoreo/MLOps
(9: monitoreo y retroalimentacion).

Metodologia para el disefo de la arquitectura GPA

Preprocesamiento

Modelado BGL

j_@L‘ -

Personalizacion
ajuste por individuo

Datos de entrada
CGM + variables clinicas

Seguridad y
validacién
guardrails, limites,
pruebas

Monitoreo y retroalimentacién (MLOps)
despliegue, metricas, recalibracion de modelos

Figura 2. Metodologia para la arquitectura GPA.
Fuente: Creacion Propia.

Médulo LLM
ex; pl |||||||| s y

Sugerencia de dosis

Supervision humana
g\ sl onstraints

confirmacién/ajuste

Las subsecciones siguientes desarrollan estas tres
macroetapas: (1) Identificacion de brechas y requisi-
tos, (2) Definicidn de principios rectores y (3) Concep-
tualizaciéon modular y flujo de datos.

Identificacion de Brechas Criticas y Requisitos: Se
definieron las necesidades funcionales (prediccion
personalizada, dosificacion asistida) y, de forma pri-
mordial, los requisitos de seguridad (prevencién de
hipoglucemia severa) a partir de las limitaciones do-
cumentadas en modelos de Machine Learning y LLMs.
Definicién de Principios Rectores: Se establecieron la
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Seguridad, la Interpretabilidad y la Adaptacion Indivi-
dual (Personalizacion) como los pilares absolutos que
deben guiar la funcionalidad de cada componente.

Conceptualizacion Modular y Flujo de Datos: Se tra-
dujeron los requisitos y principios en una estructura
de mddulos funcionales interconectados (Modulos A
a E), disenados para asegurar la implementacion del
concepto Humano en el Bucle (HITL).

Estas tres macroetapas se desarrollan en las sub-
secciones siguientes; la Figura 2 muestra el desglose
operativo en subetapas y la Figura 3 materializa su in-
tegracion arquitectonica.

Datos externos

Médulo C:
Sugerencia de
dosis segura

Mddulo B: Motor Médulo A:

de prediccion Adquisicién de

personalizada datos

° Médulo E: °

Interaccion,
explicacion y
supervision humana

Médulo D:
Interfaz de
usuario (Ul)

Figura 3. Diagrama general de la arquitectura GPA.
Fuente: Creacién Propia.

Médulo A: Adquisicion y Preprocesamiento de Da-
tos

Este mddulo actua como el punto de entrada de in-
formacion al sistema GPA, tal como se representa en
la Figura 4. Es responsable de recolectar datos de di-
versas fuentes: mediciones del sensor de Monitoreo
Continuo de Glucosa (CGM), datos de actividad fisica
obtenidos de aplicaciones de salud moviles, estima-
ciones de ingesta de carbohidratos (mediante entrada
manual o APIs de bases de datos de alimentos) y el
registro de las dosis de insulina administradas por el
usuario. Potencialmente, podria incluir ofros factores
relevantes como niveles de estrés o calidad del sue-
no. Una vez recolectados, estos datos heterogéneos
requieren un preprocesamiento cuidadoso. Esto in-
cluye la sincronizaciéon temporal para alinear eventos
con diferentes frecuencias, la limpieza para manejar
valores atipicos, la imputacién para abordar datos fal-
tantes (considerando incluso los patrones de ausencia
como informacion ufil, inspirado en Nguyen [7]), la nor-
malizacion de valores numéricos y la transformacion
de eventos discretos (como comidas o inyecciones)
en representaciones continuas o vectoriales (embe-
ddings) adecuadas para los modelos de aprendizaje
profundo, utilizando técnicas como SSR [6].
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@DQUISICI(")N/PREPROCESAMIENT@

OBJETIVO

Recolectar, limpiar, sincronizar
y preparar

TECNICAS

Integracién de CGM,
carbohidratos, insulina;
sincronizacion

MODULO A

Adgquisicion y

preprocesamiento de datos

Figura 4. Flujo de trabajo del Médulo A, Adquisicién y Pre-
procesamiento de Datos.
Fuente: Creacién Propia.

Modulo B: Motor de Prediccién Personalizada

El nucleo predictivo de GPA reside en este modulo,
cuya funcién principal se ilustra en la Figura 5. Su ob-
jetivo es generar pronosticos de la trayectoria futu-
ra de BGL del usuario para horizontes clinicamente
relevantes, tipicamente entre 30 y 120 minutos. Para
ello, utiliza un modelo de aprendizaje profundo robus-
to. Este podria ser una arquitectura hibrida que com-
bine las fortalezas de diferentes enfoques (como
VMD para descomposicidén, LSTM para tendencias
a largo plazo y Transformers para atencién a corto
plazo, siguiendo lineas como las de Farahmand [6])
O un modelo pre-entrenado de gran escala adap-
tado al dominio médico (como los basados en LLM
con embeddings especificos, [7]). La personalizacion
es clave: se logra incorporando embeddings que
representen las caracteristicas unicas del usuario
(aprendidos durante el entrenamiento o ajuste fino,
como en Armandpour [5]) o mediante el fine-tuning
del modelo con los datos historicos especificos de
ese individuo. Dada la posibilidad de despliegue en
dispositivos moviles, la eficiencia computacional es
una consideracion importante, pudiendo explorarse
técnicas como Knowledge Distillation [6], para redu-
cir el tamano y la carga computacional del modelo
sin sacrificar excesiva precision.

PREDICCION BGL
OBJETIVO

Generar predicciones

TECNICAS

LSTM, CNN, TRANSFORMERS,
HIBRIDOS.
Embeddings de usuario/Fine-
tuning

MODULOB

Motor de prediccién personalizadas de BGL a corto
y mediano plazo

(ej. 30-120 min)

Figura 5. Componentes del Médulo B: Motor de Prediccion
Personalizada.
Fuente: Creacioén Propia.

Médulo C: Sugerencia de Dosis Segura

Basandose en las predicciones del Médulo B y el es-
tado actual del usuario, el Modulo C genera recomen-
daciones de dosis de insulina, como bolos prepandia-
les o dosis de correccion. La estructura y logica de
este médulo se detallan en la Figura 6. La seguridad
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es el principio rector absoluto de este modulo. Toma
como entrada la prediccion de BGL, el valor actual
de BGL, el objetivo glucémico personalizado, las
ratios de insulina-carbohidratos (ICR) y el factor de
sensibilidad a la insulina (ISF) del usuario, la cantidad
de carbohidratos planeada y la insulina activa calcu-
lada (IOB). Su légica combina las formulas estandar
de dosificacion (calculo de bolo por carbohidratos y
factor de correccién) con la posibilidad de un ajuste
fino mediante un modelo de machine learning simple,
entrenado con datos histéricos de dosis-respuesta
del usuario (siempre que se disponga de datos su-
ficientes y se valide por expertos). Ademas, imple-
menta multiples capas de seguridad para prevenir
dosificaciones peligrosas: establece limites maximos
y minimos absolutos para cualquier sugerencia, ge-
nera alertas automaticas y bloquea sugerencias si se
predice una hipoglucemia severa inminente, consi-
dera obligatoriamente la IOB para evitar la acumula-
cion de insulina (stacking), verifica contraindicaciones
basicas vy, de forma explicita, prioriza evitar la hipo-
glucemia sobre alcanzar la hormoglucemia perfecta,
aprendiendo de las limitaciones observadas en LLMs
[1][10]. Cada sugerencia puede ir acompanada de un
indicador de confianza que refleje la incertidumbre
de la prediccion subyacente.

SUGERENCIA DE DOSIS

OBJETIVO

TECNICAS

Reglas estrictas de seguridad y

MODULO C

Estimar dosis de insulina de
insulina (correccién)
priorizando la seguridad

Sugerencia de dosis segura nivel de confianza

Figura 6. Légica y capas de seguridad del Médulo C: Suge-
rencia de Dosis Segura.
Fuente: Creacién Propia.

Médulo D: Interfaz de Usuario (Ul)

La interaccion del usuario con el sistema GPA se pro-
duce a traveés de este modulo, visualizado en la Figura
7, y materializado como una aplicacion mévil y/o una
plataforma web. Esta interfaz debe presentar de for-
ma clara e intuitiva los dafos de BGL actuales e histo-
ricos, las predicciones futuras (ej, a 30, 60, 120 min)
y las sugerencias de dosis generadas por el Mddulo
C, junto con cualquier advertencia relevante. Es res-
ponsable de generar alertas preventivas basadas en
las predicciones, como riesgos inminentes de hipo o
hiperglucemia. Adicionalmente, debe facilitar la entra-
da manual de datos por parte del usuario (comidas,
ejercicio, insulina no registrada automaticamente, no-
tas) y permitir la configuracion de parametros perso-
nales como objetivos glucémicos vy ratios (ICR, ISF).
También visualizara las explicaciones proporcionadas
por el Modulo E.

INTERFAZ
OBJETIVO

Visual datos (predicciones,

TECNICAS

Gréficos claros, alertas,
formularios de entrada,
configuracion personalizada

MODULO D

Interfaz de usuario (Ul)

sugerencias), facilitar entrada
de datos y configurar

Figura 7: Funcionalidades clave de la Interfaz de Usuario
(Médulo D).
Fuente: Creacion Propia.

Médulo E: Interaccién, Explicacion y Supervision
Humana (HITL)

Este modulo cumple un doble propdosito vital: facilitar la
comprension del usuario y garantizar una capa esen-
cial de supervision humana, como se esquematiza en
la Figura 8. Para la explicabilidad, utiliza un Modelo de
Lenguaje Grande (LLM), preferentemente operando
con Recuperacion Aumentada por Generacion (RAG)
para basar sus respuestas en datos y directrices fia-
bles. Este LLM explica las predicciones y sugerencias
en lenguaje natural y comprensible, respondiendo a
preguntas del usuario sobre sus datos, tendencias o
las recomendaciones del sistema. EIl componente de
Supervision Humana implementa el flujo de trabajo
HITL [1]: las sugerencias de dosis consideradas cri-
ticas (ej., bolos grandes, correcciones significativas,
ajustes pre-ejercicio) requieren una confirmacion ex-
plicita por parte del usuario antes de ser consideradas
como “administradas” dentro del sistema. El usuario
siempre conserva la autoridad final, pudiendo modi-
ficar o ignorar cualquier sugerencia. Opcionalmente,
podria integrarse un flujo para compartir datos y deci-
siones con un profesional de la salud. Se aplican res-
tricciones de seguridad estrictas al LLM para evitar
que genere consejos médicos incorrectos, peligrosos
0 no solicitados, confirmando su rol principal a la ex-
plicacion y resumen, no a la generacion autonoma de
directrices médicas criticas. El sistema también puede
incorporar mecanismos para aprender del feedback
implicito (confirmacion/rechazo de sugerencias) y ex-
plicito del usuario o profesional.

(NTERACCION/SUPERVISIO@

OBJETIVO

Explicar resultados en lenguaje
natural, gestionar interaccion y
supervisién humana

TECNICAS

LLM con RAG para explicar,
Restricciones de seguridad
parael LLM

MODULOE

Interaccion y explicacion

Figura 8. Funcionalidades clave de la Interfaz de Usuario.
Fuente: Creacién Propia.
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Tabla 1: Comparacién de modelos en la prediccién de la
glucosa sanguinea, asistencia en la dosificacién y su se-
guridad

Enfoque Generacion de Capacidad de Seguridad y
Sugerencias de Personalizacién Supervision
Dosis
Métodos No Baja No
tradicionales
Deep No Media No
Learning
Base
Deep No Alta No
Learning
Hibrido
Modelos Si Alta Mucho riesgo
LLMs
Arquitectura Si Alta Prioriza la seguridad
GPA

Fuente: Creacién propia

RESULTADOS

En complemento a la comparacién presentada en la
Tabla 1, los hallazgos de esta comparacién, revelan
la evolucion de los modelos de IA y las brechas no
cubiertas por los enfoques existentes. A continuacion,
se detallan los avances logrados por los modelos de
Deep Learning y las limitaciones de los LLMs para
contextualizar el valor de la Arquitectura GlucoPredic-
tAssist (GPA) como una solucion innovadora que inte-
gra prediccion y seguridad en la dosificacion.

Los modelos de aprendizaje profundo (LSTM, CNN-
LSTM, Transformers, modelos hibridos con atencion
y/o descomposicion) superan consistentemente a
los métodos tradicionales para la prediccion de BGL,
especialmente al capturar dependencias temporales
complejas y no linealidades [4],[6].

La personalizacion del modelo mediante embeddings
de usuario y ajuste fino es necesaria para mejorar la
precision, dada la alta variabilidad interindividual [5][7].

Asimismo, la integracion de datos multimodales (CGM,
carbohidratos, insulina, actividad, etc.) mejora la pre-
diccion, pero requiere técnicas robustas para manejar
la irregularidad, dispersion y diferentes frecuencias
de muestreo [6][7]. En este contexto, las técnicas de
atencion y la descomposicion de senales como VMD
son Utiles para analizar como los niveles de glucosa
dependen de eventos pasados y para modelar de-
pendencias a largo plazo [5][6]; sin embargo, la efi-
ciencia computacional es un factor importante para
la implementacion en tiempo real, y técnicas como
Knowledge Distillation o arquitecturas optimizadas son
relevantes [6].

Por su parte, los LLMs ofrecen nuevas vias para la
interaccioén, explicacion, educaciéon y potencial asis-
tencia en la toma de decisiones [10][1]. Sin embar-
go, su aplicacion directa en tareas numéricas criticas
como la prediccion BGL o la dosificacion de insulina
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presenta riesgos significativos de errores y seguridad
[1],[8][10] y exige extrema precaucion, validacion rigu-
rosa vy, preferiblemente, supervision humana (HITL)[1].

Aunque la arquitectura GlucoPredictAssist (GPA) per-
manece en fase conceptual y aun no se ha evaluado
con usuarios reales, se ha trazado una ruta ético-re-
gulatoria acorde con la normativa mexicana vigente.
Al no involucrar sujetos humanos ni datos personales
identificables, esta etapa preliminar no requiere la re-
vision formal de un Comité de Etica en Investigacion;
sin embargo, se aconseja solicitar una “carta de exen-
cién” o “no objecion” al CEl institucional para respal-
dar la trazabilidad del proyecto y preparar su transi-
cién a fases posteriores. De manera complementaria,
se han considerado el marco de proteccion de datos
personales (LFPDPPP) y las disposiciones de la NOM-
004-SSA3-2012 para expedientes clinicos, asi como
las regulaciones aplicables a software como disposi-
tivo médico (SaMD) reconocidas por COFEPRIS —en
particular la NOM-241-SSA1-2021y el Suplemento 5.0
de la Farmacopea de México. En caso de implemen-
tarse clinicamente, GPA debera contar con protocolo
aprobado por CEl, notificacion o autorizacion sanita-
ria correspondiente y validaciones técnicas y clinicas
conforme a estandares nacionales e internacionales
(IMDRF, OMS, FDA).

Discusion

La revision de la literatura confirma la superioridad de
los modelos de aprendizaje profundo (LSTM, Trans-
formers, arquitecturas hibridas) sobre métodos tra-
dicionales para la prediccion de BGL, gracias a su
capacidad para modelar las complejas dinamicas
temporales y no lineales de la glucosa. La personaliza-
cién (embeddings, fine-tuning) y la integracion robusta
de datos multimodales (CGM, carbohidratos, insulina,
actividad) surgen como factores cruciales para mejo-
rar la precisiéon predictiva, aunque presentan desafios
técnicos relacionados con la heterogeneidad y dis-
persion de los datos.

Si bien los LLMs muestran un potencial considerable
para mejorar la interaccion, explicacion y educacion
del paciente, su aplicacion directa en tareas numeri-
cas criticas como la prediccion BGL o la sugerencia
de dosis de insulina conlleva riesgos significativos de
seguridad y precision. El principal problema identifica-
do es la falta de sistemas que integren de forma fiable
y segura predicciones precisas con recomendacio-
nes de dosificacion personalizadas y accionables.

La propuesta arquitectonica, GlucoPredict-Assist,
busca abordar esta brecha combinando modelos
predictivos avanzados, potencialmente Transformer,
con un médulo de sugerencia de dosis disenado con
estrictas reglas de seguridad como consideraciéon de
IOB, priorizacién de evitacion de hipoglucemia y un en-
foque HITL. Se propone el uso de LLMs, especifica-
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mente con RAG, para tareas de explicacion y soporte
a la interaccion, pero no para la generacioén directa de
recomendaciones médicas criticas, mitigando asi los
riesgos identificados.

CONCLUSIONES

Este trabajo propone la arquitectura GlucoPredic-
tAssist (GPA), que vincula la prediccion personali-
zada de BGL con la generacion de sugerencias de
dosificacion bajo salvaguardas clinicas (guardrails) y
supervision humana (HITL). La aportacion principal es
conectar de forma explicita la prediccion con un me-
canismo de dosificacidén seguro, tfrazable y persona-
lizable, operable en entornos reales mediante moni-
toreo y recalibracion. Ademas, el papel de los LLMs
se limita a funciones de explicacién y verificacion,
evitando su uso directo en tareas numéricas criticas.
Hasta donde alcanza nuestra revision, no identifica-
mos propuestas que integren simultdneamente pre-
diccién personalizada, dosificacién con salvaguardas
clinicas y operacion con monitoreo y recalibracion
bajo supervision humana.

La propuesta permanece en fase conceptual. Como
trabajo futuro se requiere validacién clinica prospec-
tiva, evaluacion de seguridad (p. €j., reducciéon de hi-
poglucemias), usabilidad y factores humanos, y prue-
bas de generalizacion entre perfiles de pacientes vy
contextos de uso. Estos pasos definiran su madurez y
posible adopcion en practica clinica.
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