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RESUMEN: El manejo efectivo de la dia-
betes requiere control glucémico preciso 
y acciones proactivas. Este trabajo aporta 
(i) una revisión crítica de las técnicas de 
predicción de glucosa sanguínea (BGL) —
aprendizaje automático tradicional, mode-
los de aprendizaje profundo (LSTM, CNN, 
Transformers y enfoques híbridos) y el rol 
emergente de los Modelos de Lenguaje 
a Gran Escala (LLMs), considerando va-
riables como carbohidratos e insulina—, y 
(ii) la propuesta arquitectónica GlucoPre-
dict-Assist (GPA) para pronóstico perso-
nalizado de BGL y generación de suge-
rencias de dosis.

El desarrollo se estructura en tres pasos: 
primero, se analizan enfoques avanzados 
(descomposición de señales, personaliza-
ción y uso de modelos preentrenados) y su 
impacto en eficiencia y precisión; segun-
do, se identifican brechas, en particular 
la integración de predicciones fiables con 
sugerencias de dosis seguras, así como 
limitaciones y riesgos actuales de los 
LLMs; tercero, se diseña GPA priorizando 
seguridad, interpretabilidad y adaptación 
individual.

Esta propuesta establece las bases para 
una herramienta que, al mitigar picos y 
favorecer decisiones informadas, podría 
mejorar de forma significativa el automa-
nejo de la diabetes.
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ABSTRACT: Effective diabetes management requires ac-
curate glycemic control and proactive actions. This paper 
provides (i) a critical review of blood glucose (BGL) predic-
tion techniques—traditional machine learning, deep learning 
models (LSTM, CNN, Transformers, and hybrid approa-
ches), and the emerging role of Large Language Models 
(LLMs), considering variables such as carbohydrates and 
insulin—and and (ii) the GlucoPredictAssist (GPA) architec-
tural proposal for personalized BGL forecasting and dose 
suggestion generation.

The development is structured in three steps: first, advan-
ced approaches (signal decomposition, personalization, 
and use of pre-trained models) and their impact on efficien-
cy and accuracy are analyzed; second, gaps are identified, 
in particular the integration of reliable predictions with safe 
dose suggestions, as well as current limitations and risks of 
LLMs; third, GPA is designed prioritizing safety, interpreta-
bility, and individual adaptation.

This proposal lays the foundation for a tool that, by mitiga-
ting spikes and promoting informed decisions, could signi-
ficantly improve diabetes self-management.

KEYWORDS: Deep Learning, System Architecture, Diabe-
tes Mellitus, Insulin Dosing, Glucose Prediction, Large Lan-
guage Models.

INTRODUCCIÓN
La diabetes mellitus representa una condición crónica genera-
lizada globalmente, que exige un automanejo meticuloso para 
prevenir complicaciones severas. Un pilar fundamental es el 
control de los niveles de glucosa sanguínea (BGL, por sus si-
glas en inglés) el cual es una variable dinámica influenciada 
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por múltiples factores: la ingesta de carbohidratos, la 
medicación de insulina, la actividad física, el estrés y la 
variabilidad fisiológica individual. Esta complejidad se 
acentúa con nuevas opciones terapéuticas y riesgos 
metabólicos adicionales, presentando a menudo a los 
profesionales sanitarios múltiples opciones terapéuti-
cas válidas según las guías, pero sin un consenso cla-
ro sobre el enfoque óptimo [1]. Aunque la tecnología 
de Monitoreo Continuo de Glucosa (CGM, por sus si-
glas en inglés) ofrece datos valiosos en tiempo real, su 
interpretación y la acción proactiva derivada continúan 
siendo un desafío, incluso con herramientas de análi-
sis como el Perfil Ambulatorio de Glucosa (AGP, por 
sus siglas en inglés) [2].

Este trabajo responde a la necesidad, tanto personal 
como general, de disponer de herramientas más efi-
caces para anticipar las fluctuaciones futuras de BGL 
y, de forma crucial, para guiar la dosificación adecua-
da de medicamentos, permitiendo manejar proacti-
vamente los picos de glucosa. El objetivo central es 
doble: primero, realizar una revisión exhaustiva de las 
técnicas actuales de inteligencia artificial para la pre-
dicción de BGL; segundo, proponer una arquitectura 
de sistema que integre predicción personalizada con 
sugerencias de dosis seguras y accionables, buscan-
do así mejorar el control glucémico y la calidad de 
vida. 

En este marco, la investigación se guía por una pre-
gunta puntual: ¿cómo anticipar, con datos de CGM y 
variables clínicas (carbohidratos, insulina, actividad), 
las variaciones de BGL a corto plazo y convertir esas 
predicciones en sugerencias de dosificación seguras 
y accionables? Para darle desarrollo, se delimitó el al-
cance (predicción personalizada y apoyo a la dosifica-
ción), se definieron criterios y población de referencia, 
y se ejecutó una revisión de la literatura conforme al 
proceso general de la Figura 1 (objetivo y alcance → 
búsqueda y cribado → extracción y organización → 
síntesis temática y análisis crítico).  

Las principales aportaciones son: (i) Identificación de 
una necesidad crítica: ausencia de herramientas que 
integren predicción fiable de BGL con sugerencias de 
dosis seguras y personalizables; (ii) Revisión exhaus-
tiva del estado del arte: análisis de métodos tradicio-
nales y de aprendizaje profundo (LSTM, CNN, Trans-
formers y enfoques híbridos), variables y métricas 
reportadas; (iii) Evaluación del papel de los LLMs en 
diabetes: potencial para sugerencias/explicaciones y 

límites y riesgos en seguridad clínica; y (iv) Propuesta 
de arquitectura: GlucoPredictAssist (GPA), orientada 
a seguridad, interpretabilidad y adaptación individual, 
que integra predicción y soporte a la dosificación.

Para cumplir con este doble objetivo, la revisión de la 
literatura se estructuró de manera crítica y progresiva. 
Se comenzó con el análisis de los métodos de predic-
ción de BGL, desde el aprendizaje automático tradi-
cional hasta las arquitecturas de aprendizaje profundo 
más avanzadas (LSTM, CNN, Transformers y enfoques 
híbridos), evaluando su precisión y eficiencia. Poste-
riormente, la revisión se focalizó en un desafío crítico: 
la integración de estas predicciones con sugerencias 
de dosificación seguras, examinando el rol emergente 
de los Modelos de Lenguaje a Gran Escala (LLMs) y 
sus inherentes riesgos de seguridad en el ámbito clí-
nico.

La hipótesis fundamental sostiene que una combi-
nación sinérgica de modelos de aprendizaje profun-
do (posiblemente incorporando descomposición de 
señales, mecanismos de atención y estrategias de 
personalización) junto con una arquitectura cuidado-
samente diseñada que integre principios de seguridad 
y supervisión humana, puede superar las limitaciones 
actuales y mejorar significativamente el automanejo 
de la diabetes.

Revisión de la literatura
La predicción de los niveles de BGL es un campo 
de estudio extenso. Los enfoques iniciales compren-
den modelos estadísticos y técnicas de aprendizaje 
automático tradicional, incluyendo Support Vector 
Regression (SVR), Random Forests, y árboles de de-
cisión. Aunque son útiles, estos métodos a menudo 
tienen dificultades con su naturaleza no lineal, dinámi-
ca y multifactorial de la regulación de la glucosa.

El aprendizaje profundo demuestra un potencial con-
siderablemente mayor en este dominio. Las Redes 
Neuronales Recurrentes (RNNs, por sus siglas en in-
glés), y en particular las Long Short-Term Memory 
(LSTMs), son inherentemente adecuadas para cap-
turar las dependencias temporales,[3]. Por otro lado, 
las Redes Neuronales Convolucionales (CNNs, por sus 
siglas en inglés) se emplean para extraer patrones lo-
cales, frecuentemente integrados en arquitecturas hí-
bridas CNN-LSTM [4]. Más recientemente, los mode-
los Transformer y los mecanismos de atención, como 
los implementados por Armandpour [5], muestran una 
notable capacidad para modelar dependencias a lar-
go plazo e integrar fuentes de datos multimodales. 
Estrategias híbridas que combinan la descomposición 
de características, por ejemplo, mediante Variational 
Mode Decomposition (VMD) con LSTMs para capturar 
tendencias a largo plazo y Transformers para fluctua-
ciones a corto plazo, junto con técnicas de optimiza-
ción como Knowledge Distillation para la compresión 

Figura 1. Proceso de revisión.         
Fuente: Creación Propia.
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de modelos, reportan mejoras significativas en preci-
sión y eficiencia [6].

Un desafío persistente es la integración efectiva de 
datos multimodales CGM, carbohidratos, insulina, ac-
tividad física, estrés, etc. Que presentan diferentes 
características de muestreo y grados de dispersión. 
Para lo que se proponen soluciones como la trans-
formación de eventos discretos en señales continuas 
(SSR, por sus siglas en inglés) [6] o el uso de capas 
de embedding aprendibles junto con modelos preen-
trenados como Bidirectional Encoder Representations 
from Transformers (BERT) para manejar datos es-
tructurados de registros médicos longitudinales [7]. La 
personalización es un elemento vital; enfoques como 
el uso de embeddings específicos de usuario [5] o 
el ajuste fino (fine-tuning) de modelos pre-entrenados 
[7] permiten adaptar modelos generales a las particu-
laridades fisiológicas y de comportamiento de cada 
individuo. La eficiencia computacional es otro factor 
crítico, especialmente para el despliegue en disposi-
tivos móviles o de borde; técnicas como Knowledge 
Distillation [6] y la optimización de implementaciones 
son, por tanto, relevantes. La interpretabilidad de los 
modelos de aprendizaje profundo, aunque es com-
pleja, es de gran importancia, y métodos como los 
gradientes integrados pueden ayudar a identificar los 
factores clínicos más influyentes [7].

En el panorama reciente, los LLMs como GPT-4 emer-
gen con potencial en el ámbito de la salud. Pueden 
responder preguntas [8],[9], resumir información, ana-
lizar datos de CGM [2] e incluso asistir en la genera-
ción de planes de manejo o selección de medicación 
[1],[10]. No obstante, su aplicación directa para tareas 
numéricas precisas como la predicción de BGL o el 
cálculo de dosis de medicación conlleva comparativos 
indican que, si bien los LLMs pueden generar planes 
de tratamiento o seleccionar medicaciones alineadas 
con guías clínicas, a menudo adoptan un enfoque más 
cauteloso que los expertos humanos [1] o, preocupan-
temente, pueden cometer errores críticos de seguri-
dad como omitir medicamentos necesarios, continuar 
terapias inadecuadas o sugerir dosis incorrectas en 
un porcentaje no despreciable de casos [10]. Además, 
pueden exhibir sesgos hacia tratamientos más nue-
vos o costosos [1] y su fiabilidad se ve comprometida 
por la posibilidad de generar información incorrecta 
o ”alucinaciones” [8]. La confianza pública en estos 
sistemas, particularmente en situaciones agudas, es li-
mitada, con una preferencia mayoritaria por la supervi-
sión de profesionales sanitarios [8],[11]. Técnicas como 
la Generación Aumentada por Recuperación (RAG, 
por sus siglas en inglés) pueden mejorar la fiabilidad 
al anclar las respuestas en fuentes de conocimiento 
confiables [9]. Asimismo, los sistemas que incorporan 
Humano en el bucle (HITL, por sus siglas en inglés) se 
consideran esenciales para mitigar riesgos y asegurar 
una implementación segura y efectiva [1].

3. ARQUITECTURA PROPUESTA
Derivado de la revisión de literatura y con el fin de abor-
dar las brechas identificadas, en especial la necesidad 
crítica de unificar predicciones precisas de BGL con 
sugerencias de dosificación que sean seguras, fiables 
y aplicables, se propone una arquitectura de sistema 
integrado, denominada provisionalmente GlucoPre-
dictAssist (GPA). Este sistema se concibe para el pro-
nóstico personalizado de BGL y la generación asistida 
de sugerencias de dosis de insulina, fundamentándo-
se en los principios de seguridad, interpretabilidad y 
adaptación individual a través de un enfoque robusto 
de Interacción Humano-Computadora (HITL).

3.1 Metodología de Diseño de la Arquitectura
El diseño de la arquitectura GPA se fundamentó en un 
enfoque de Sistemas centrado en los requisitos, si-
guiendo un proceso de tres etapas clave impulsado 
por los hallazgos de la revisión de literatura. Este pro-
ceso metodológico buscó asegurar la robustez clínica 
y la seguridad del usuario desde la concepción:
Para facilitar la comprensión, la Figura 2 resume el 
proceso en tres tres macroetapas, compuestas por 
nueve subetapas: I) Datos y Modelado (1: adquisición 
de datos; 2: preprocesamiento; 3: modelado de BGL; 
4: personalización); II) Sugerencia y Control (5: suge-
rencia de dosis; 6: módulo LLM; 7: seguridad y valida-
ción; 8: supervisión humana); y III) Monitoreo/MLOps 
(9: monitoreo y retroalimentación).  

Figura 2. Metodología para la arquitectura GPA. 
Fuente: Creación Propia.

Las subsecciones siguientes desarrollan estas tres 
macroetapas: (1) Identificación de brechas y requisi-
tos, (2) Definición de principios rectores y (3) Concep-
tualización modular y flujo de datos.

Identificación de Brechas Críticas y Requisitos: Se 
definieron las necesidades funcionales (predicción 
personalizada, dosificación asistida) y, de forma pri-
mordial, los requisitos de seguridad (prevención de 
hipoglucemia severa) a partir de las limitaciones do-
cumentadas en modelos de Machine Learning y LLMs.
Definición de Principios Rectores: Se establecieron la 
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Figura 3. Diagrama general de la arquitectura GPA.
Fuente: Creación Propia.

Figura 4. Flujo de trabajo del Módulo A, Adquisición y Pre-
procesamiento de Datos.
Fuente: Creación Propia.

Figura 5. Componentes del Módulo B: Motor de Predicción 
Personalizada.
Fuente: Creación Propia.

Seguridad, la Interpretabilidad y la Adaptación Indivi-
dual (Personalización) como los pilares absolutos que 
deben guiar la funcionalidad de cada componente.

Conceptualización Modular y Flujo de Datos: Se tra-
dujeron los requisitos y principios en una estructura 
de módulos funcionales interconectados (Módulos A 
a E), diseñados para asegurar la implementación del 
concepto Humano en el Bucle (HITL).

Estas tres macroetapas se desarrollan en las sub-
secciones siguientes; la Figura 2 muestra el desglose 
operativo en subetapas y la Figura 3 materializa su in-
tegración arquitectónica.

Módulo A: Adquisición y Preprocesamiento de Da-
tos
Este módulo actúa como el punto de entrada de in-
formación al sistema GPA, tal como se representa en 
la Figura 4. Es responsable de recolectar datos de di-
versas fuentes: mediciones del sensor de Monitoreo 
Continuo de Glucosa (CGM), datos de actividad física 
obtenidos de aplicaciones de salud móviles, estima-
ciones de ingesta de carbohidratos (mediante entrada 
manual o APIs de bases de datos de alimentos) y el 
registro de las dosis de insulina administradas por el 
usuario. Potencialmente, podría incluir otros factores 
relevantes como niveles de estrés o calidad del sue-
ño. Una vez recolectados, estos datos heterogéneos 
requieren un preprocesamiento cuidadoso. Esto in-
cluye la sincronización temporal para alinear eventos 
con diferentes frecuencias, la limpieza para manejar 
valores atípicos, la imputación para abordar datos fal-
tantes (considerando incluso los patrones de ausencia 
como información útil, inspirado en Nguyen [7]), la nor-
malización de valores numéricos y la transformación 
de eventos discretos (como comidas o inyecciones) 
en representaciones continuas o vectoriales (embe-
ddings) adecuadas para los modelos de aprendizaje 
profundo, utilizando técnicas como SSR [6]. 

Módulo B: Motor de Predicción Personalizada
El núcleo predictivo de GPA reside en este módulo, 
cuya función principal se ilustra en la Figura 5. Su ob-
jetivo es generar pronósticos de la trayectoria futu-
ra de BGL del usuario para horizontes clínicamente 
relevantes, típicamente entre 30 y 120 minutos. Para 
ello, utiliza un modelo de aprendizaje profundo robus-
to. Este podría ser una arquitectura híbrida que com-
bine las fortalezas de diferentes enfoques (como 
VMD para descomposición, LSTM para tendencias 
a largo plazo y Transformers para atención a corto 
plazo, siguiendo líneas como las de Farahmand [6]) 
o un modelo pre-entrenado de gran escala adap-
tado al dominio médico (como los basados en LLM 
con embeddings específicos, [7]). La personalización 
es clave: se logra incorporando embeddings que 
representen las características únicas del usuario 
(aprendidos durante el entrenamiento o ajuste fino, 
como en Armandpour [5]) o mediante el fine-tuning 
del modelo con los datos históricos específicos de 
ese individuo. Dada la posibilidad de despliegue en 
dispositivos móviles, la eficiencia computacional es 
una consideración importante, pudiendo explorarse 
técnicas como Knowledge Distillation [6], para redu-
cir el tamaño y la carga computacional del modelo 
sin sacrificar excesiva precisión. 

 
Módulo C: Sugerencia de Dosis Segura
Basándose en las predicciones del Módulo B y el es-
tado actual del usuario, el Módulo C genera recomen-
daciones de dosis de insulina, como bolos prepandia-
les o dosis de corrección. La estructura y lógica de 
este módulo se detallan en la Figura 6. La seguridad 
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Figura 7: Funcionalidades clave de la Interfaz de Usuario 
(Módulo D).
Fuente: Creación Propia.

Figura 8. Funcionalidades clave de la Interfaz de Usuario.
Fuente: Creación Propia.

Figura 6. Lógica y capas de seguridad del Módulo C: Suge-
rencia de Dosis Segura.
Fuente: Creación Propia.

es el principio rector absoluto de este módulo. Toma 
como entrada la predicción de BGL, el valor actual 
de BGL, el objetivo glucémico personalizado, las 
ratios de insulina-carbohidratos (ICR) y el factor de 
sensibilidad a la insulina (ISF) del usuario, la cantidad 
de carbohidratos planeada y la insulina activa calcu-
lada (IOB). Su lógica combina las fórmulas estándar 
de dosificación (cálculo de bolo por carbohidratos y 
factor de corrección) con la posibilidad de un ajuste 
fino mediante un modelo de machine learning simple, 
entrenado con datos históricos de dosis-respuesta 
del usuario (siempre que se disponga de datos su-
ficientes y se valide por expertos). Además, imple-
menta múltiples capas de seguridad para prevenir 
dosificaciones peligrosas: establece límites máximos 
y mínimos absolutos para cualquier sugerencia, ge-
nera alertas automáticas y bloquea sugerencias si se 
predice una hipoglucemia severa inminente, consi-
dera obligatoriamente la IOB para evitar la acumula-
ción de insulina (stacking), verifica contraindicaciones 
básicas y, de forma explícita, prioriza evitar la hipo-
glucemia sobre alcanzar la normoglucemia perfecta, 
aprendiendo de las limitaciones observadas en LLMs 
[1],[10]. Cada sugerencia puede ir acompañada de un 
indicador de confianza que refleje la incertidumbre 
de la predicción subyacente.

Módulo E: Interacción, Explicación y Supervisión 
Humana (HITL)
Este módulo cumple un doble propósito vital: facilitar la 
comprensión del usuario y garantizar una capa esen-
cial de supervisión humana, como se esquematiza en 
la Figura 8. Para la explicabilidad, utiliza un Modelo de 
Lenguaje Grande (LLM), preferentemente operando 
con Recuperación Aumentada por Generación (RAG) 
para basar sus respuestas en datos y directrices fia-
bles. Este LLM explica las predicciones y sugerencias 
en lenguaje natural y comprensible, respondiendo a 
preguntas del usuario sobre sus datos, tendencias o 
las recomendaciones del sistema. El componente de 
Supervisión Humana implementa el flujo de trabajo 
HITL [1]: las sugerencias de dosis consideradas crí-
ticas (ej., bolos grandes, correcciones significativas, 
ajustes pre-ejercicio) requieren una confirmación ex-
plícita por parte del usuario antes de ser consideradas 
como “administradas” dentro del sistema. El usuario 
siempre conserva la autoridad final, pudiendo modi-
ficar o ignorar cualquier sugerencia. Opcionalmente, 
podría integrarse un flujo para compartir datos y deci-
siones con un profesional de la salud. Se aplican res-
tricciones de seguridad estrictas al LLM para evitar 
que genere consejos médicos incorrectos, peligrosos 
o no solicitados, confirmando su rol principal a la ex-
plicación y resumen, no a la generación autónoma de 
directrices médicas críticas. El sistema también puede 
incorporar mecanismos para aprender del feedback 
implícito (confirmación/rechazo de sugerencias) y ex-
plícito del usuario o profesional. 

Módulo D: Interfaz de Usuario (UI)
La interacción del usuario con el sistema GPA se pro-
duce a través de este módulo, visualizado en la Figura 
7, y materializado como una aplicación móvil y/o una 
plataforma web. Esta interfaz debe presentar de for-
ma clara e intuitiva los datos de BGL actuales e histó-
ricos, las predicciones futuras (ej., a 30, 60, 120 min) 
y las sugerencias de dosis generadas por el Módulo 
C, junto con cualquier advertencia relevante. Es res-
ponsable de generar alertas preventivas basadas en 
las predicciones, como riesgos inminentes de hipo o 
hiperglucemia. Adicionalmente, debe facilitar la entra-
da manual de datos por parte del usuario (comidas, 
ejercicio, insulina no registrada automáticamente, no-
tas) y permitir la configuración de parámetros perso-
nales como objetivos glucémicos y ratios (ICR, ISF). 
También visualizará las explicaciones proporcionadas 
por el Módulo E.
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RESULTADOS
En complemento a la comparación presentada en la 
Tabla 1, los hallazgos de esta comparación, revelan 
la evolución de los modelos de IA y las brechas no 
cubiertas por los enfoques existentes. A continuación, 
se detallan los avances logrados por los modelos de 
Deep Learning y las limitaciones de los LLMs para 
contextualizar el valor de la Arquitectura GlucoPredic-
tAssist (GPA) como una solución innovadora que inte-
gra predicción y seguridad en la dosificación.

Los modelos de aprendizaje profundo (LSTM, CNN-
LSTM, Transformers, modelos híbridos con atención 
y/o descomposición) superan consistentemente a 
los métodos tradicionales para la predicción de BGL, 
especialmente al capturar dependencias temporales 
complejas y no linealidades [4],[6].

La personalización del modelo mediante embeddings 
de usuario y ajuste fino es necesaria para mejorar la 
precisión, dada la alta variabilidad interindividual [5],[7].

Asimismo, la integración de datos multimodales (CGM, 
carbohidratos, insulina, actividad, etc.) mejora la pre-
dicción, pero requiere técnicas robustas para manejar 
la irregularidad, dispersión y diferentes frecuencias 
de muestreo [6],[7]. En este contexto, las técnicas de 
atención y la descomposición de señales como VMD 
son útiles para analizar cómo los niveles de glucosa 
dependen de eventos pasados y para modelar de-
pendencias a largo plazo [5],[6]; sin embargo, la efi-
ciencia computacional es un factor importante para 
la implementación en tiempo real, y técnicas como 
Knowledge Distillation o arquitecturas optimizadas son 
relevantes [6].

Por su parte, los LLMs ofrecen nuevas vías para la 
interacción, explicación, educación y potencial asis-
tencia en la toma de decisiones [10],[1]. Sin embar-
go, su aplicación directa en tareas numéricas críticas 
como la predicción BGL o la dosificación de insulina 

presenta riesgos significativos de errores y seguridad 
[1],[8],[10] y exige extrema precaución, validación rigu-
rosa y, preferiblemente, supervisión humana (HITL)[1]. 

Aunque la arquitectura GlucoPredictAssist (GPA) per-
manece en fase conceptual y aún no se ha evaluado 
con usuarios reales, se ha trazado una ruta ético-re-
gulatoria acorde con la normativa mexicana vigente. 
Al no involucrar sujetos humanos ni datos personales 
identificables, esta etapa preliminar no requiere la re-
visión formal de un Comité de Ética en Investigación; 
sin embargo, se aconseja solicitar una “carta de exen-
ción” o “no objeción” al CEI institucional para respal-
dar la trazabilidad del proyecto y preparar su transi-
ción a fases posteriores. De manera complementaria, 
se han considerado el marco de protección de datos 
personales (LFPDPPP) y las disposiciones de la NOM-
004-SSA3-2012 para expedientes clínicos, así como 
las regulaciones aplicables a software como disposi-
tivo médico (SaMD) reconocidas por COFEPRIS —en 
particular la NOM-241-SSA1-2021 y el Suplemento 5.0 
de la Farmacopea de México. En caso de implemen-
tarse clínicamente, GPA deberá contar con protocolo 
aprobado por CEI, notificación o autorización sanita-
ria correspondiente y validaciones técnicas y clínicas 
conforme a estándares nacionales e internacionales 
(IMDRF, OMS, FDA).

Discusión 
La revisión de la literatura confirma la superioridad de 
los modelos de aprendizaje profundo (LSTM, Trans-
formers, arquitecturas híbridas) sobre métodos tra-
dicionales para la predicción de BGL, gracias a su 
capacidad para modelar las complejas dinámicas 
temporales y no lineales de la glucosa. La personaliza-
ción (embeddings, fine-tuning) y la integración robusta 
de datos multimodales (CGM, carbohidratos, insulina, 
actividad) surgen como factores cruciales para mejo-
rar la precisión predictiva, aunque presentan desafíos 
técnicos relacionados con la heterogeneidad y dis-
persión de los datos.

Si bien los LLMs muestran un potencial considerable 
para mejorar la interacción, explicación y educación 
del paciente, su aplicación directa en tareas numéri-
cas críticas como la predicción BGL o la sugerencia 
de dosis de insulina conlleva riesgos significativos de 
seguridad y precisión. El principal problema identifica-
do es la falta de sistemas que integren de forma fiable 
y segura predicciones precisas con recomendacio-
nes de dosificación personalizadas y accionables.

La propuesta arquitectónica, GlucoPredict-Assist, 
busca abordar esta brecha combinando modelos 
predictivos avanzados, potencialmente Transformer, 
con un módulo de sugerencia de dosis diseñado con 
estrictas reglas de seguridad como consideración de 
IOB, priorización de evitación de hipoglucemia y un en-
foque HITL. Se propone el uso de LLMs, específica-

Tabla 1: Comparación de modelos en la predicción de la 
glucosa sanguínea, asistencia en la dosificación y su se-
guridad

Fuente: Creación propia
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mente con RAG, para tareas de explicación y soporte 
a la interacción, pero no para la generación directa de 
recomendaciones médicas críticas, mitigando así los 
riesgos identificados.

CONCLUSIONES
Este trabajo propone la arquitectura GlucoPredic-
tAssist (GPA), que vincula la predicción personali-
zada de BGL con la generación de sugerencias de 
dosificación bajo salvaguardas clínicas (guardrails) y 
supervisión humana (HITL). La aportación principal es 
conectar de forma explícita la predicción con un me-
canismo de dosificación seguro, trazable y persona-
lizable, operable en entornos reales mediante moni-
toreo y recalibración. Además, el papel de los LLMs 
se limita a funciones de explicación y verificación, 
evitando su uso directo en tareas numéricas críticas. 
Hasta donde alcanza nuestra revisión, no identifica-
mos propuestas que integren simultáneamente pre-
dicción personalizada, dosificación con salvaguardas 
clínicas y operación con monitoreo y recalibración 
bajo supervisión humana.

La propuesta permanece en fase conceptual. Como 
trabajo futuro se requiere validación clínica prospec-
tiva, evaluación de seguridad (p. ej., reducción de hi-
poglucemias), usabilidad y factores humanos, y prue-
bas de generalización entre perfiles de pacientes y 
contextos de uso. Estos pasos definirán su madurez y 
posible adopción en práctica clínica.
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